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Highlights  Abstract  

▪ It is possible to train a neural network with only 

data from an undamaged machine. 

▪ The order spectrum of the novel parameter 

rDPNS is proposed. 

▪ The new method application for diagnosing 

unbalance and misalignment was analysed. 

▪ Proposed architecture is resilient to overfitting 

without drop-outs and bagging. 

 The fault diagnosis for maintenance of machines operating in variable 

conditions requires special dedicated methods. Variable load or 

temperature conditions affect the vibration signal values. The article 

presents a new approach to diagnosing rotating machines using an 

artificial neural network, the training of which does not require data from 

the damaged machine. This is a new approach not previously found in 

the literature. Until now, neural networks have been used for machine 

diagnosis in the form of classifiers, where data from individual faults 

were required. A new diagnostic parameter rDPNS (Relative Differences 

Product of Network Statistics) as a function of the machine's shaft order 

was proposed as a kind of new order spectrum independent of the 

machine's operating conditions. The presented work analyses the use of 

the proposed method to diagnose misalignment and unbalance. The 

results of an experiment carried out in the laboratory demonstrated the 

effectiveness of the proposed method. 
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1. Introduction 

In the maintenance of rotating machinery, the vibration signal is 

the basis of condition monitoring systems. Dedicated signal 

analysis methods are applied depending on the technical object 

under investigation. An overview of methods for diagnosing 

planetary gears can be found in [1]. The vibration signal is often 

used in the diagnosis of rolling bearings, and several 

applications can be found in [2,3]. In a traditional condition 

monitoring approach following ISO 20816-1 [4], vibration 

measurement is required under fixed operating conditions of the 

machine. Unfortunately, this is often impossible to achieve in 

industrial conditions because a large group of machines operate 

exclusively in variable conditions. In addition to any damage, 

the values of the parameters obtained using classic methods of 

vibration signal analysis are also affected by the operating 

conditions, i.e. changes in rotational speed, load, or oil 

temperature [5,6]. Many studies have been conducted in which 

the problem of eliminating the impact of changes in rotational 

speed and load condition on the vibration signal was addressed 

[7–9]. One way to do this is to use synchronous methods [10–

12], which allow for the elimination of spectrum blur resulting 

from variable rotational speed [5]. However, variable operating 

conditions also affect the values of spectral amplitudes [13,14]. 
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Each operating condition factor affects the amplitude of 

diagnostic signals in a different way [15] and this requires the 

use of advanced signal analysis methods to separate the failure 

factors from the operating condition factors, given that the 

influence of these parameters can cause amplitude changes that 

can be interpreted by automatic monitoring systems as the 

presence of a fault. Vibration diagnostics can be carried out for 

fixed operating conditions, i.e. temperature, load, speed, to 

negate this effect. However, in industrial settings, in most cases 

ensuring fixed operating conditions is impossible to meet. The 

authors focused on the search for a method to diagnose 

machines operating at variable temperature and load. 

In this work, a method based on the analysis of orders and 

artificial neural networks is proposed. A naturally occurring 

artificial intelligence model for diagnostic applications is that of 

classifier models. This is problematic, however, because when 

using neural networks as classifiers, learning data recorded for 

the machine to be diagnosed and for predicted faults are 

required [16–24]. There is work related to the reduction of 

damage data in learning vectors [25]. In industrial settings, 

acquiring measurement data for faults in a particular facility is 

difficult to achieve. Often, expensive expert inspections and 

preventive replacements are used to prevent faults from 

occurring, and this is especially true for machines that are 

unique in their design. As a result, the learning sets (necessary 

when using neural networks as classifiers) would contain  

a redundant representation of data from the undamaged machine 

relative to the data recorded during faults. There are review 

studies indicating that such unbalanced learning sets translate 

into poorer ability to classify underrepresented states [26–28] In 

excess of this, even for objects of the same type, vibration 

signals can vary considerably due to imperfect workmanship. In 

addition, any new unforeseen damage may be misclassified. It 

is also possible to search for a damage model when creating 

diagnostic tools [29–32]; however, damage models in most 

cases require calibration with measurement data. 

In the approach proposed by the authors, the artificial neural 

network model is not directly responsible for classifying the 

state of the machine. The regressive artificial neural network is 

trained only with data recorded during the fault-free operation, 

creating a reference model of the correct operation of the 

machine. This is a new approach not previously found in the 

literature. Until now, neural networks have been used to 

diagnose machines in the form of classifiers, where data from 

individual faults were necessary. The authors emphasise that, as 

a result, the presented method allows diagnostics to be 

automated without the need for prior data collection from 

damaged machines. 

The result of the applied method is the generation of values 

for a proposed diagnostic parameter rDPNS (Relative 

Differences Product of Network Statistics) as a function of the 

shaft order. This allows for damage identification according to 

the theory of classical vibroacoustic diagnostics, based on 

spectral analysis. This solves another problem of using artificial 

intelligence for diagnostics as there is no need to predict 

particular types of damage in advance. 

The next section presents a method for analysis of 

measurement signals in order to obtain input data for the 

artificial neural network. Section 3 contains a description of the 

applied architecture of the artificial neural network, the training 

method, the implementation of the neural network, and the 

method for obtaining the spectrum of diagnostic parameters. 

Section 4 describes the verification of the proposed method in 

the laboratory. Section 5 presents the results of the conducted 

diagnostic experiment. 

2. Vibration signals analysis method 

The proposed method for diagnosing rotary machines operating 

under variable loads is based on vibration acceleration, 

rotational speed, current intensity, and temperature 

measurements, with these signals being recorded 

synchronously. Then, the vibration signals are retested against 

the rotational speed signal of one of the shafts of the system. For 

this purpose, the order analysis method was used. In the first 

phase, the signal from the tachometer is subjected to the 

interpolation procedure using a cascaded integrator-comb CIC 

filter. Then, based on the filtered signal from the tachometer,  

a procedure of resampling the vibration signal is carried out in 

order to determine the vibration signal in relation to the angle 

of rotation (even angle signal). In the resampling method, time-

samples are converted to angle samples. The time-samples are 

samples of the physical signal that are equally spaced in time. 

The angle samples are samples that are equally spaced in the 

rotation angle. The signal tested in this way can be subjected to 
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a rapid Fourier Transform (FFT), which results in a spectrum of 

orders. The order spectrum represents the amplitude as  

a function of orders and not as a function of frequency. The 

orders correspond to the multiple of the shaft frequency on 

which the rotational speed is measured [33]; in this case, the 

rotational speed is measured on the output shaft of the gearbox.  

Analysis of orders also allows for observation of individual 

orders over time. By monitoring the amplitudes of characteristic 

orders, it is possible to obtain information about the technical 

condition of the tested object. However, a change in the 

amplitude value may also be caused by a change in the system 

load [34]. Thus, the order analysis makes it possible to 

compensate for changes in the frequency domain caused by 

variable loads. However, the question of the impact of the load 

on the signal amplitude remains. Therefore, this work attempted 

to develop a method that gives results independent of working 

conditions. The measurement of the load moment requires 

specialised apparatus, and in most cases is impossible to carry 

out in industrial conditions. However, assuming that the motor 

driving the system is powered by a constant frequency and 

amplitude voltage, which often occurs in industrial conditions, 

any change in speed will be caused by a changing load. 

Therefore, the rotational speed signal in this work will be used 

not only for resampling by the order analysis method but also 

for describing the impact of the load on vibration signals. 

Another indirect measurement method of the load moment is 

the measurement of the current supplying the drive motor [35]. 

In the proposed method, the waveforms of both the current 

intensity and the rotational speed were taken as data describing 

the load change. Fig. 1 shows a signal processing algorithm for 

building vectors that teach an artificial neural network. At the 

input of the processing algorithm, signals of the vibration 

acceleration and the tachometer with a length of 30s are given. 

Then, the order analysis procedure is carried out using the 

method of testing the vibration signal with respect to the 

rotational speed of the shaft [33]. In the resampling method, 

time-samples are converted to angle samples. The time-samples 

are samples of the physical signal that are equally spaced in 

time; the angle samples are samples that are equally spaced in 

the rotation angle. The resampled signal undergoes a rapid 

Fourier Transform (FFT). The analysis of orders also allows us 

to obtain the waveforms of order amplitudes over time. In the 

next step n, the signals coming from n orders, as well as the 

temperature and current signals, are sorted in relation to the 

rotational speed of the machine shaft. The theoretical values of 

vibration signals should be repeatable for the same load 

conditions. The next step is to determine the moving mean for 

N subsequent elements. Averaging was used to reduce data 

dispersion. The data prepared were input vectors to the artificial 

neural network. The authors similarly prepared the data in their 

previous work [15].

 

Fig. 1. Signal processing algorithm.

3. Neural network 

3.1.Network architecture 

In order to take into account the relationship between the values 

of the order spectrum and the operating conditions of the 

machine, it was decided to use a deep neural network as  

a universal method, effectively approximating the complex 

relationships between the data [36–38]. In regression problem 

where the number of output variables is greater than the number 

of input variables, a common approach is to use an architecture 
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built from multiple neural networks, where the output variables 

are divided between several networks so that each of the 

subnetworks has more inputs than outputs. Such an approach 

has proved its effectiveness in solving inverse problems in 

tomography [39–41]. In the paper [15], results were published 

in which data on working conditions were treated as input data 

and attempts were made to recreate the values of the amplitudes 

of the order spectrum by modelling each of the orders 

separately. By complementing the models with techniques that 

make them resistant to overfitting, it was possible to obtain an 

architecture with satisfactory diagnostic and identification 

effectiveness, at the cost of needing to use a complex 

architecture consisting of 12,000 independently trained neural 

networks. 

This paper proposes a new approach to recreating the 

relationship between working conditions and the spectrum of 

orders. Instead of predicting spectrum values based on the point 

of operation, a neural network was trained which treats the 

values of the order spectrum as input data and estimates the 

expected point of operation of the transmission based on them. 

Such an approach allows us to build a single network with  

a large number of input variables in relation to the number of 

outputs, which allows us to obtain satisfactorily small 

estimation errors. In addition, thanks to the reversal of the 

estimation method, the need to use synthetic output data was 

removed, making the system resistant to the phenomenon of 

overfitting and eliminating the need to use bagging, which 

multiplied the number of neural networks needed to train the 

network. A diagram of the architecture of used multilayer fully-

connected perceptron is presented in Fig. 2. The fundamental 

consideration in designing a neural network is its relatively 

small size to enable implementation in continuous monitoring 

systems. The number of input variables depends on the number 

of order amplitudes that we want to observe in the diagnosis 

process. In the case studied, the mesh order is No. 72, so 100 

orders in two axes were analysed in order to observe the mesh 

modulation. 

Model of the network and the training process was 

implemented in R programming language via Keras API.

 

Fig. 2. The architecture of the applied neural network.

3.2.Network training 

In industrial environments, data from damaged machines are 

difficult to access or scarce compared to data from undamaged 

machines because an industry strives to repair such machines as 

quickly as possible. Preventive replacement of parts is also 

practised (e.g. in the energy industry) to avoid the effects of  

a fault in the form of downtime, high costs, or disasters [42,43]. 

Another problem is the multitude of different types of damage 

that can occur in real machines, which will characterise  

a different nature of machine malfunctions. For these reasons, 

using classical machine learning methods is significantly more 

difficult, as they require collecting data sets containing 

predetermined types of damage. In addition, a small number of 

data cases with damage in training sets (in relation to fault-free 
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data) may negatively affect the model training process. In order 

to address these two fundamental problems, a revised approach 

to network training was applied, whereby the teaching set for  

a given neural network contained only data from an undamaged 

machine. In this way, the learned network will be  

a mathematical model of the undamaged machine. In general, 

the mechanism allowing for detecting faults consists in 

observing the differences between the measured machine 

parameters and the values predicted by the learned model. If the 

machine works faultlessly, the values from the model should be 

close to the measured values, while the increase in estimation 

errors suggests the appearance of damage. 

The premise of the proposed method is that the training data 

should be determined from signals recorded for all possible 

ranges of operating conditions. Otherwise, signals for operating 

conditions not entered during network training could be 

interpreted as a fault during diagnosis. The fulfilment of this 

condition is feasible because, usually in industrial conditions, 

the range of changes in the machine's operating conditions does 

not change during operation. 

The data set from undamaged machine was divided into the 

training and test parts in an 80/20 percent ratio, and MSE (mean 

square error) was assumed as a function of the loss in the 

training process. 

3.3.Using a trained network for diagnostics  

The applied model allows for direct detection of a potential fault 

by observing the error scatter of the learned network. It is worth 

emphasising that while the technique based on comparing the 

error scatter allows for relatively simple detection of potential 

defects, it has limited identification capabilities. To detect and 

identify the defect, the authors propose to carry out an additional 

procedure allowing for the assessment of the discrepancy of 

network results for individual spectrum orders. The algorithm 

of this procedure is presented in Table 1.

Table 1. Procedure for determining the diagnostic parameter for individual orders. 

3.4.Diagnostic parameter developed 

As part of this work, the diagnostic parameter Relative 

Differences Product of Network Statistics (rDPNS) was 

developed (1), which is determined for each order separately: 

𝑟𝐷𝑃𝑁𝑆(𝑖) = 𝑅𝑒𝐿𝑈 (
𝑠𝑓

2(𝑖) − 2𝑠𝑔
2(𝑖)

𝑠𝑓
2(𝑖) + 2𝑠𝑔

2(𝑖)
 )

∙ 𝑅𝑒𝐿𝑈 (
𝑚𝑓(𝑖) − 𝑚𝑔(𝑖)

𝑚𝑓(𝑖) + 𝑚𝑔(𝑖)
) 

(1) 

where 𝑠𝑓
2(𝑖), 𝑠𝑔

2(𝑖), 𝑚𝑔(𝑖), 𝑚𝑓(𝑖) are the variances and means 

calculated according to the procedure in Table 1 and ReLU is 

Stage Step Action 

Determination of 

parameters for the 

state without 

damage 

1 Calculate network responses for the reference data (faultless) 

2 Swap values of amplitudes of the order 𝑖 in the reference data with the analogous 

values from the training set 

3 Calculate responses for data after data swapping 

4 Calculate the vectors of differences between pre- and post-swapping responses 

5 Calculate the maximum norms of the obtained vectors of differences  

 6 Determine the mean and variance of the obtained norms: 𝑚𝑔(𝑖), 𝑠𝑔
2(𝑖) 

Determination of 

parameters for the 

state without 

damage 

7 Calculate network responses for data examined for failure 

8 Swap values of amplitudes of the order 𝑖 in the examined data with the analogous 

values from the reference set 

9 Calculate responses for data after data swapping 

10 Calculate the vectors of differences between pre- and post-swapping responses 

11 Calculate the maximum norms of the obtained vectors of differences  

12 Determine the mean and variance of the obtained norms: 𝑚𝑓 (𝑖), 𝑠𝑓
2(𝑖) 

Determination of 

the diagnostic 

parameter 

13 Determine the diagnostic parameter 𝑟𝐷𝑃𝑁𝑆(𝑖) according to the formula (1) 
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Rectified Linear Unit:  

𝑅𝑒𝐿𝑈(𝑥) = {
𝑥   𝑖𝑓 𝑥 ≥ 0

  0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

The parameter rDPNS proposed in this paper considers both 

the change in the mean value and the variance of the algorithm 

results from Table 1. Such a parameter was chosen because for 

signals originating from undamaged machine, an increase in the 

mean value and the variance in relation to these values for 

signals from the damaged machine was observed. In addition, 

due to differences in the values of variance for signals with and 

without faults, in order to ensure proper comparison, it was 

decided to compare the signal variance with faults with the 

doubled variance of signals without faults. In the case of means, 

no weights were used. The basic property of the measure 

proposed in this way is its limitedness – the value of the 

parameter will be in the range [0,1]. As the differences between 

examined and reference means and variances get greater, the 

value of the coefficient will be closer to one. For similar values, 

the coefficient value will approach zero. If any of the 

differences occurring in formula (1) is negative, the case is 

interpreted as the lack of defect. Because of that, the formula 

uses the ReLU function, which zeroes the rDPNS coefficient in 

such a situation. It is worth noting that the ReLU must be 

calculated separately for both factors in order to exclude a 

situation in which the product of two negative factors would 

result in a positive coefficient value. 

The use of a measure whose values fall within the range 

[0,1] allows for the use of the effect size scale. It was decided 

to use the Cohen [44] scale mainly used for qualitative 

variables, which also works perfectly for other coefficients [15]. 

The Cohen scale is as follows: 

Table 2. Cohen Scale. 

Range of parameter The Power of the Effect 

0–0.1 No effect 

0.1–0.3 Little effect 

0.3–0.5 Medium effect 

0.5–1.0 Large effect 

Determining the 𝑟𝐷𝑃𝑁𝑆 parameter for each order individually 

allows for the identification of potential faults in accordance 

with the classic spectral analysis of the vibration signal. For 

example, changes in the value for order 1 will be caused by 

unbalance of the machine shaft. Changes in the value for order 

2 will be caused by shifts in placement between rigidly 

connected machines [45]. However, for couplings, it will be an 

order corresponding to the number of coupling gears. 

4. Experimental validation 

In order to validate the proposed method of diagnosis, an 

experiment was carried out on a laboratory stand for diagnosing 

planetary gears. 

4.1.Rig design 

The laboratory stand (Fig. 3) consists of an electric motor 

driving (1) a TRAMEC EP 90/1 planetary gearbox (2), which 

was then connected using a jaw coupling (3) with a second 

motor acting as a load (4). Frequency converters (5) controlled 

both the driving and braking motors. The converters allow for 

any function of rotational speed and load.

 

Fig. 3. Schematic drive train. 
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Fig. 4. Real drive train.

A three-axis vibration acceleration sensor PCB 356B08 and 

a temperature sensor LM35 are mounted on the transmission 

housing. The rotational speed was measured using a laser 

tachometer, while the current intensity was measured using an 

ACS714 sensor. The recording of the measurement signals and 

the signal processing algorithm were carried out in a dedicated 

application built in the LabVIEW environment. Fig. 4 shows a 

photo of the laboratory stand. 

4.2.Experimental methodology 

In order to verify the effectiveness of the trained network in 

diagnosis, faults were introduced in the laboratory bench. 

Measurements were carried out for four states of the drive 

system, without damage, for misalignment between the 

transmission and the braking motor, unbalance, and 

simultaneous unbalance and misalignment. 

Table 3. Designation and measurement time for individual states 

of the drive system. 

Designation Condition of the machine Measurement time 

S0 no damage 30 min 

S1 misalignment 30 min 

S2 unbalance 30 min 

S3 misalignment and unbalance 30 min 

The state of misalignment (S1) consisted in placing washers 

0.5mm thick under the front feet of the drive motor. The place 

where the washers were mounted is marked on Fig. 3 (d1). 

Unbalance (S2) was introduced by placing an additional mass 

(3g) on the output shaft coupling (Fig. 3) (d2). The state of S3 

consisted in the simultaneous introduction of misalignment and 

unbalance. For each state, signals with a length of 30 min were 

recorded. In order to examine the influence of temperature on 

vibration signals, measurements were also carried out while 

heating the system for a temperature in the range of 35–40 °C. 

After each state, the machine was switched off until it cooled 

down to ambient temperature. 

The system was subjected to a load corresponding to the 

load occurring on the main gear of the bucket wheel excavator 

but scaled to the capabilities of the laboratory stand. The 

reference signal was obtained from the monitoring system of the 

main gearbox of a KWK 1500s excavator. The gearbox included 

in the laboratory stand was loaded in the range of 1.3 Nm to 4.0 

Nm, which resulted in changes in the rotational speed in the 

range of 730–758 RPM. The course of rotational speed changes 

is shown in Fig. 5. With a constant set voltage value on the drive 

motor, the load causes a change in rotational speed and vibration 

amplitude. 

 

Fig. 5. Output shaft rotational speed waveform. 

5. Results 

The results were analysed using order analysis alone, and the 

dependence of the spectrum of orders on load and temperature 

is presented. Next, the results of the neural network for the data 

from the experiment are presented, and the values of the 

proposed rDPNS parameter in the order function are presented. 

5.1.Order analysis 

In the case of machines operating under variable load or 
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rotational speed, synchronous methods are used. One popular 

tool is the order spectrum, however order spectrum analysis 

may not be a sufficient tool to assess technical conditions in 

high load variability. Fig. 6 shows the spectrum of vibration 

acceleration orders for the system without damage (black) and 

for the system with misalignment.  

 

Fig. 6. The spectrum of vibration acceleration orders for the 

system without damage (black) and for the system with 

misalignment (red). 

Misalignment of the system with the jaw coupling results in 

changes for the order corresponding to the number of claws 

(order 4), its multiples, and the frequency of meshing (order 72). 

Observing the spectrum of orders, the differences for orders 4 

and 8 are not significant, while the amplitude of the order of 

meshing decreases with the damage. In this case, the 

misalignment might not be detected using the averaged order 

spectrum. The error bars represent the standard deviation of the 

amplitude caused by the system's variable load.  

The short-time order spectra as a function of rotational speed 

caused by the load change are shown in Fig. 7. The left side 

shows the spectrum for the system without damage, while the 

right side shows the spectrum for the system with the introduced 

misalignment. Significant differences in the values of the 

spectrum amplitudes caused by the load can be observed both 

for the efficient system and the one with damage introduced. 

However, there is a significant change in the nature of the 

dependence of the amplitudes of the orders on the rotational 

speed (caused by the change in load), especially for the meshing 

band of the diagnosed machine (64–80 orders).

  

Fig. 7. Spectrum of vibration acceleration orders as a function of rotational speed, for the system without damage (left) and for the 

system with misalignment (right), temperature 36.2 °C. 

 

Fig. 8. The spectrum of vibration acceleration orders as a function of temperature, for the system without damage (left) and for the 

system with misalignment (right).



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 25, No. 3, 2023 

 

The oil temperature also influences the amplitude of 

vibrations generated by the gearbox. Fig. 8 shows the spectra of 

the orders as a function of the temperature measured on the gear 

body. A significant impact on the vibration acceleration 

amplitude values is visible, especially in the meshing band (64–

80 orders). 

5.2.Scatter plots of errors 

The error scatter of individual network output values was 

analysed. Fig. 9 shows a graph of the error scatter of network 

output values for the test data compared to the error scatter for 

the training data, while Fig. 10 compares analogous graphs for 

data with the considered faults introduced.  

Fig. 9 shows that introducing new faultless data into the 

network results in the fact that the observable scatter of 

estimation errors remain at a level similar to that observed for 

the training data. This means that the network has correctly 

learnt to recognise faultless operation states, and the model is 

not overfitted.

 

Fig. 9. Scatter of network output estimation error for faultless data. The output was subject to standardisation. Data from the test set 

(black), data from the training set (grey).

On the other hand, as shown in Fig. 10, when we transfer 

data from the damaged system to the network, the neural 

network estimation error scatter increases noticeably. Since the 

network was taught the nature of fault-free system, the increase 

in the error scatter must mean that the nature of the machine 

deviates from the normal one, suggesting the occurrence of a 

fault. Overall, the smallest increases in scatter were observed 

for unbalance, which, given the nature of this defect, was the 

expected result, because unbalance causes amplitude changes 

only for order 1. Nevertheless, this increase, especially in the 

case of temperature, is so visible that it allows us to effectively 

distinguish it from the point cloud corresponding to faultless 

data. Misalignment occurred to be easier to detect; the neural 

network estimation error cloud for misalignment or 

misalignment with unbalance is significantly larger than that for 

faultless data. In addition, the difference in the error of 

determining the temperature, when we add the unbalance to the 

misalignment, is so noticeable that it allows us to distinguish the 
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two states from one another. It is also interesting that while the 

unbalance alone increases the temperature estimation error, in 

the case of co-existence with the misalignment, the unbalance 

seems to cause a decrease in the temperature estimation error in 

relation to the error when the misalignment occurs on its own.

 

Fig. 10. Scatter of network output estimation error for fault data. The output values were subject to standardisation. Fault-free – test 

data (black), unbalance (blue), misalignment (red), misalignment and unbalance (orange).

5.3.Neural network 

This section presents the graphs of the rDPNS parameter as  

a function of the order, determined following the algorithm 

presented in Table 1. Fig.11 shows the spectrum for the 

misalignment state (S1). According to the theory of diagnostics, 

the misalignment causes an increase in order amplitude 

corresponding to the number of claws (4). The rDPNS 

parameter value for order 4 is in the range of 0.3–0.5, which 

indicates a medium effect according to the Cohen scale. 

Significant values (> 0.5) are adopted by rDPNS in the range of 

meshing (68–76 orders) because misalignment also affects the 

way the gears mesh [46]. 

 

Fig. 11. Spectrum of orders of parameter rDPNS for state S1 

(misalignment). 
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The values of rDPNS for the unbalance state (S2) are shown 

in Fig. 12. According to the Cohen scale, a large effect can be 

observed only for order 1. This is consistent with the theory of 

diagnostics regarding the unbalance of rotating elements. Order 

1 corresponds to the rotational frequency of the shaft on which 

the unbalance occurred. Observing the spectrum, it can be 

clearly stated that there is an unbalance. 

 

Fig. 12. Spectrum of orders of parameter rDPNS for state S2 

(unbalance). 

For the state S3 corresponding to misalignment and unbalance, 

the values indicating a large effect occur both for order 1 and 

for orders from the mesh band (Fig. 13). The order spectrum of 

the parameter rDPNS looks very similar as in the case of S1; 

however, there are symptoms related to misalignment (order 4 

and orders 68–76) and unbalance (order 1). 

 

Fig. 13. Spectrum of orders of parameter rDPNS for state S3 

(misalignment and unbalance). 

6. Conclusions 

This study addressed the diagnosis of machines operating in 

variable conditions using artificial neural networks trained only 

with signals from an undamaged machine. The influence of the 

load and oil temperature on the amplitude values of the 

spectrum of orders was analysed. 

A method of diagnosis based on the analysis of orders and 

an artificial neural network that does not require learning data 

from the faulty machine has been proposed. This is a new 

approach not previously found in the literature. So far, neural 

networks have been used in diagnosis in the form of classifiers, 

where training data attributed to the faults in question were 

required. For this reason, the presented technique can be 

considered as an unsupervised method from the point of view 

of machine learning theory, which significantly facilitates its 

application in industrial conditions. The trained, deep neural 

network mapped the relationships between the values of 

amplitudes in the spectrum of orders (constituting the input 

variables of the network) and the rotational speed, oil 

temperature, and current, which constituted the output 

variables. This paper proposes a new approach to illustrating the 

relationship between working conditions and the spectrum of 

orders. It has been shown that in the event of damage, there is 

an increase in errors in the estimation of the network trained to 

predict the operating conditions in the faultless operation of the 

drive.  

 In order to identify emerging faults, a procedure for 

analysing the neural network response was proposed, allowing 

us to generate the rDPNS diagnostic parameter in the form of a 

normalised spectrum. The normalised spectrum allows for use 

in automatic monitoring systems. The rDPNS parameter 

proposed in the paper allows for the determination of the size of 

the potential damage effect on the characteristics of each order. 

As a result, it allows us to obtain a spectrum of orders of the 

rDPNS parameter, which can be interpreted in accordance with 

the theory of vibroacoustic diagnostics. This spectrum is 

resistant to interference introduced by variable operating 

conditions (e.g. load, oil temperature). 

 In order to verify the correctness of the proposed method, 

an experiment was carried out on a laboratory stand, and the 

possibility of detecting misalignment, unbalance and 

misalignment and unbalance at the same time was analysed. In 

the case of misalignment, a large effect of the rDPNS parameter 

failure was observed for orders corresponding to this damage. 

Similarly, in the case of unbalance, a large effect was observed 

for the rDPNS corresponding to order 1. However, in the case 

of simultaneous misalignment and unbalance, a spectrum of 

orders of the rDPNS parameter was obtained similar to the state 
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of misalignment alone. However, there is also a large effect on 

the parameter corresponding to order 1.  

The conducted experiment proves that the presented method 

allows for the potential identification of a wide range of various 

types of faults without the need to take into account – at the 

system design stage – which faults are to be captured. In 

addition, by presenting the results in the form of a standardised 

spectrum, the result of the analysis is intuitive for diagnostics 

specialists or interpretable by automatic systems, which is 

another aspect facilitating the implementation of such  

a technique in industrial conditions. 

Further experiments will address the potential of using other 

network models to reduce the computational complexity of the 

entire procedure.
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